УДК 621.396.98

МОДЕЛЬ ГРАВИИНЕРЦИАЛЬНОЙ СИСТЕМЫ НА ОСНОВЕ ИНТЕРПРЕТАЦИИ ПРИНЦИПА Д'АЛАМБЕРА¹

© 2010 А.С. Девятисильный, К.А. Числов²

Дано теоретико-механическое обоснование двухкомпонентного метода инерциальной навигации и приведены результаты численного исследования построенной на его базе модели гравиинерциальной системы.

Ключевые слова: инерциальная навигация, гравиметрия, ньютонометр, гироскоп, обратная задача, вейвлет.

Введение

В настоящей статье в рамках общности теоретико-механических представлений о задачах инерциальной навигации и гравиметрии [1] предложена модель гравиинерциальной системы (ГИС/GIS), реализуемая на основе двухкомпонентного (2D — по числу ньютонометров, или акселерометров [2]) метода инерциальной навигации. От обсуждаемой в [1] модели ГИС ее отличает отсутствие специального условия на движение объекта-носителя (по сфере), ограничивающего применение ГИС на широком классе объектов. Снять такое ограничение удается, как показано ниже, благодаря доступности (от навигационной спутниковой системы типа ГЛОНАСС/GLONASS) информации о модуле радиус-вектора положения объекта в геоцентрической системе координат и обращению к принципу Д'Аламбера. Еще один аспект, который кратко затронут в статье и актуален для решения задачи гравиметрии на подвижном основании, это апостериорная обработка гравиметрической съемки. Ее эффективность иллюстрируется в работе примером применения вейвлет-технологий.

1. Основные модели

Как и в [1], исходное представление математической модели ГИС ограничивается постановкой обратной задачи в форме уравнений "состояние-измерение", где уравнения состояния — это уравнения пространственного движения объекта,

¹Исследование поддержано грантами РФФИ-ДВО (№09-01-98503-р_восток_а) и ДВО РАН (№ 09-1-П29-02, № 09-III-А-03-066).

²Девятисильный Александр Сергеевич (devyatis@iacp.dvo.ru), Числов Кирилл Александрович (kirillche@rambler.ru), Институт автоматики и процессов управления, 690041, Российская Федерация, г. Владивосток, ул. Радио, 5.

отождествляемого с материальной точкой, или динамическая группа уравнений трехкомпонентного метода инерциальной навигации [3], так что

$$\dot{q}_i = -e_{ikj}\omega_k q_j + p_i, \quad q_i(0) = q_{i,0}, \dot{p}_i = -e_{ikj}\omega_k p_j + G_i(\mathbf{q}) + F_i, \quad p_i(0) = p_{i,0}, \quad i, j, k = \overline{1,3},$$

$$J = |r| + \epsilon,$$
(1.1)

где J и ϵ — соответственно измерение и его погрешность; e_{ikj} — псевдотензор Леви-Чивита, $\mathbf{q} = (q_i), \mathbf{p} = (p_i), \boldsymbol{\omega} = (\omega_i), \mathbf{G} = (G_i), \mathbf{F} = (F_i)$ — соответственно векторы координат, удельных импульсов, абсолютной угловой скорости вращения горизонтируемой приборной платформы, напряженности гравитационного поля Земли (GEполя) и удельных сил негравитационной природы в проекциях на оси координатного ортогонального трехгранника (обозначим его через $oy = oy_1y_2y_3$) с началом в центре Земли и осями, параллельными осям приборного трехгранника $\delta y = \delta y_1y_2y_3$, в идеальном случае ориентированного так, что ось δy_3 направлена по радиус-вектору положения объекта, а оси δy_1 и δy_2 — соответственно на географические восток и север; заметим также, что в (1.1), как и всюду далее, действует правило суммирования по повторяющимся индексам.

Как следует из изложенного, $|\mathbf{q}| = r = q_3$ и $J = r + \epsilon$.

Цель настоящей статьи — отличная от [1] прикладная интерпретация модели (1.1).

Напомним, что согласно концепции метода инерциальной навигации модель (1.1) должна быть дополнена моделями измерений величин F_i и ω_i , $i = \overline{1,3}$, реализуемых с помощью инерциальных измерителей — ньютонометров и гироскопов. Тогда, учитывая, что при измерении F_i , ω_i и q_3 обычно реализуется процедура динамического сглаживания (режим отслеживания параметра), можно считать, что в конечном итоге доступными являются не только их сглаженные оценки (\tilde{F}_i , $\tilde{\omega_i}$ и \tilde{q}_3), но и производные, в частности, $\dot{\omega_i}$, \dot{q}_3 , \ddot{q}_3 . Далее примем, что $\tilde{q}_3 = J$, $\dot{q}_3 = \dot{q}_3 + \epsilon_1$, $\ddot{q}_3 = \ddot{q}_3 + \epsilon_1$, $\tilde{F}_i = F_i + f_i$, $\tilde{\omega_i} = \omega_i + \nu_i$, $\tilde{\omega_i} = \dot{\omega_i} + \Delta_i$, где ϵ_1 , ϵ_2 , f_i , ν_i , Δ_i – инструментальные погрешности.

В отличие от случая 3D-ИНМ, когда для получения опорного решения ДГУ необходимо моделировать все шесть уравнений $(i = \overline{1,3})$, здесь, благодаря тому, что $q_3 = r$ измеряется, предполагается моделирование только первых четырех $(i = \overline{1,2})$, т. е. речь идет, по сути, о 2D-схеме ИНМ, в которой, следует отметить, модельные значения переменных q_3 и p_3 ($p_3 = \dot{q}_3 + \omega_2 q_3 - \omega_1 q_2$), а также напряженности GE-поля формируются с учетом значений сглаженных оценок \tilde{q}_3 и \dot{q}_3 .

В силу того, что при таком моделировании не вычисляется опорное значение q_3 (оно, как указано выше, измеряется), построить невязку измерения $\delta J = \delta q_3 + \epsilon$ и поставить задачу коррекции как обратную задачу "в малом" в той форме, в которой это было сделано, например в [4], теперь уже нельзя.

Вместо этого изберем другой путь, а именно обратимся к принципу Д'Аламбера [2].

Используя этот принцип на оси оу₃, имеем условие

$$z = \dot{p}_3 - \omega_2 p_1 + \omega_1 p_2 - G_3 - F_3 = 0,$$

или

$$z = \ddot{q}_3 - (\dot{\omega}_2 + \omega_3^2)q_1 - (\omega_2\omega_3 - \dot{\omega}_1)q_2 + (\omega_1^2 + \omega_2^2)q_3 - -2\omega_2p_1 + 2\omega_1p_2 - G_3 - F_3 = 0.$$
(1.2)

Подстановка в (1.2) значений переменных, доступных благодаря измерениям (заметим, что оценка \ddot{q}_3 может быть определена в силу того, что измеряется q_3)

и моделированию динамической группы уравнений в режиме двухкомпонентного метода инерциальной навигации $(i = \overline{1,2})$, приводит к невязке $\delta z \neq 0$, которая содержит информацию о погрешностях моделирования, что позволяет поставить обратную задачу "в малом" для оценки значений этих погрешностей, модель которой принимает вид

$$\begin{aligned} \delta \dot{q}_{i} &= -e_{ikj}\omega_{k}\delta q_{j} + \delta p_{i} - e_{ikj}\nu_{k}q_{j}, \quad \delta q_{i}(0) = \delta q_{i,0}, \\ \delta \dot{p}_{i} &= -e_{ikj}\omega_{k}\delta p_{j} - \delta G(r,\mathbf{q}) + f_{i} - e_{ikj}\nu_{k}p_{j}, \quad \delta p_{i}(0) = \delta p_{i,0}, \\ \delta z &= \ddot{q}_{3} - (\dot{\omega}_{2} + \omega_{3}^{2})\delta q_{1} - (\omega_{2}\omega_{3} - \dot{\omega}_{1})\delta q_{2} + 2\omega_{2}\delta p_{1} + 2\omega_{1}\delta p_{2} + \\ + \delta G(r,\mathbf{q}) - (\omega_{1}^{2} + \omega_{2}^{2})\epsilon + \epsilon_{2} + f_{3} = 0, \end{aligned} \tag{1.3}$$

где следует считать, что $\delta G_i(r, \mathbf{q}) = g_i + \frac{\partial G_i(r, \mathbf{q})}{\partial r} \delta r + \frac{\partial G_i(r, \mathbf{q})}{\partial q_j} \delta q_j$, $\mathbf{g} = (g_i)$, $i = \overline{1, 3}$ — вектор аномалии GE-поля в текущей точке траектории, $q_1 = q_2 = 0$, $q_3 = r$, $\delta q_3 = \epsilon$, $p_1 = \omega_2 q_3$, $p_2 = -\omega_1 q_3$, $p_3 = \dot{q}_3$, $\delta q_3 = \delta r = \epsilon$, $\delta p_3 = \epsilon_1 - \omega_2 \delta q_1 + \omega_1 \delta q_2$.

Далее, полагая, что имеет место существенное преобладание значения вертикальной компоненты аномалии (g_3) над горизонтальными $(g_1 \ u \ g_2)$, полагаем $g_1 =$ $= 0, g_2 = 0, g_3 = g$. Тогда расширение вектора состояния системы (1.3) за счет включения в него g с одновременным пополнением системы (1.3) уравнением эволюции g (в частности, $-\dot{g} = 0$) дает возможность найти оценку g и решить, таким образом, ту же, что и в [1], задачу уточнения модели GE-поля на заданной траектории и оценки углов наклона приборной плоскости $\tilde{o}y_1y_2$. При этом качество оценки g₃ будет тем выше, чем менее изменчиво g₃ на временном интервале наблюдения по сравнению с изменчивостью погрешностей ϵ_1 и f_3 . Относительно последней отметим следующее. Погрешность f_3 может быть погрешностью вертикального ньютонометра (его роль может исполнять и высокоточный гравиметр) или погрешностью априорных представлений о силе F₃, формируемых при организации программных траекторий для объекта-носителя. В обоих случаях возможно еще одно дополнительное расширение вектора состояния задачи за счет включения в него, кроме g, еще и f_3 . При этом очевидна желательность ситуации, когда характеры эволюции g и f_3 отличны.

Из изложенного видим, что обсуждаемая ГИС даже в случае применения в ней вертикального ньютонометра (для формирования невязки δz) существенно отличается от системы, описываемой в [4], тем, что реализуется на базе 2D-ИНМ.

При исследовании задачи (1.3) установлено выполнение алгебраического условия наблюдаемости [5] для случая движения объекта по географическим параллелям с постоянной (относительно Земли) линейной скоростью (при этом $\omega = const$), что вместе с последующим экспериментальным подтверждением устойчивости ее решения в вычислительной среде является вполне достаточным свидетельством корректности математической постановки задачи.

Учитывая представление модели ГИС в виде уравнений "состояние-измерение" [5], в имитационных вычислительных экспериментах (имеющих определяющее значение для задач ИНМ как вычислительных, по сути, задач) для решения задачи (1.3) целесообразно использование метода динамического обращения [6] в форме алгоритма калмановской фильтрации.

2. Вычислительные эксперименты

На рис. 1, 2 представлены основные результаты одного из таких экспериментов, в котором на первом этапе решения реализуется калмановское оценивание (при этом имитируется многократный проход трассы, на которой выполняется

гравиметрическая съемка), а на втором — обработка результатов первого с использованием преобразования, конструируемого на основе пирамидального алгоритма Малло [7] и ортогональных вейвлетов Добеши [8]; роль целевой функции, обеспечивающей качество обработки данных, выполняет функция, впервые предложенная в [9] и интерпретирующая оператор преобразования как проектор. Предполагается, что объект движется в восточном направлении на широте $\phi = 45^{0}$ со скоростью $v = 50 \text{ м/c}^{2}$, причем в радиальном направлении и широте $\phi = 45^{0}$ со скоростью $v = 50 \text{ м/c}^{2}$, причем в радиальном направлении ускорение его движения описывается как $\ddot{r} = A \left(\frac{2\pi}{T}\right)^{2} \sin \frac{2\pi}{T} t$, где A = 10 м, $T = 20\pi c$, и оценивается с погрешностью, имеющей нулевое среднее и значение среднеквадратического отклонения (СКО) $\sigma_{\epsilon_{2}} = 5 \cdot 10^{-4} \text{ м/c}^{2}$ при исходном СКО измерения r(t), равном 1 м, т. е. $\sigma_{\epsilon} = 1$ м; инструментальные погрешности ньютонометров и гироскопов представляются несмещенными относительно нуля нормальными белыми шумами со следующими СКО: $\sigma_{\nu_{i}} = 10^{-3} \text{ град/ч} \approx 10^{-9} \text{ с}^{-1}$, $\sigma_{f_{1}} = \sigma_{f_{2}} = 10^{-3} \text{ м/c}^{2}$, $\sigma_{f_{3}} = 10^{-6} \text{ м/c}^{2}$ (как видим, имеет место значительное преобладание $\sigma_{\epsilon_{2}}$ над $\sigma_{f_{3}}$, т. е. $\sigma_{\epsilon_{2}} \gg \sigma_{f_{3}}$).

Рис. 1. Оценки первого этапа:

1 — оцениваемая функция g(t) (штриховая линия); 2 — калмановская оценка g(t) при одном проходе трассы; 3 — осредненная оценка g(t) при пяти проходах трассы (белое поле внутри графика 2)

Рис. 2. Оценки второго этапа:

1 — оцениваемая функция g(t) (штриховая линия); 2 — вейвлет-оценка g(t) при одном проходе трассы; 3 — вейвлет-оценка g(t) при пяти проходах трассы

Сравнение графиков 2 и 3 на рис. 2 (как и вся совокупность выполненных вычислительных экспериментов) дает основание для вполне оптимистической оценки перспектив применения предложенной модели ГИС при условии повышения точности измерения вертикального ускорения (\ddot{r}) и обращения к методам апостериорной обработки на заключительном этапе решения задачи подвижной гравиметрии.

Заключение

Как видно из изложенного, интерпретация принципа Д'Аламбера дает теоретическое обоснование для модели ГИС на базе двухкомпоентного метода инерциальной навигации. Вместе с тем практическая реализация соответствующей схемы ГИС требует качественной (не хуже соответственно 0,1 м/с и 10⁻³ м/с²) оценки первой и второй производных модуля радиус-вектора положения объекта.

Литература

- [1] Девятисильный А.С., Числов К.А. Об инерциальных навигационных системах, корректируемых по радиальной информации // Вестник СамГУ. Естественнонаучная серия. 2008. № 6. С. 83–89.
- [2] Ишлинский А.Ю. Классическая механика и силы инерции. М.: Наука, 1987. 320 с.
- [3] Андреев В.Д. Теория инерциальной навигации. Корректируемые системы. М.: Наука, 1967. 648 с.
- [4] Девятисильный А.С., Числов К.А. Численное моделирование задачи коррекции трехкомпонентной инерциальной навигационной системы по высотной информации // Изв. РАН. Теория и системы управления. 2004. № 5. С. 101–105.
- [5] Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: Мир, 1971. 400 с.
- [6] Осипов Ю.С., Кряжемский А.В. Задачи динамического обращения // Вестник РАН. 2006. Т. 76. С. 615–624.
- Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation // IEEE Transaction on Pattern Analysis and Machine Intelligence. 1989. V. 11. № 7. P. 674–693.
- [8] Daubechies I. Ten lectures on wavelets // CBMS-NFS conference series in applied mathematics. — SIAMED, 1992. 388 p.
- [9] Девятисильный А.С., Прудкогляд Н.А. Моделирование астроинерциальной системы в условиях стохастической неопределенности // Авиакосмическое приборостроение. 2007. № 11. С. 39–44.

Поступила в редакцию 5/V/2010; в окончательном варианте — 5/V/2010.

THE MODEL OF GRAVIINERTIAL SYSTEM BASED ON THE PRINCIRLE OF D'ALAMBER INTERPRETATION

© 2010 A.S. Devyatisilniy, K.A. Chislov³

The theoretical and mechanical substantiation of two-dimensional inertial navigation method is given. The results of numerical research of 2D graviinertial system are shown.

Key words: inertial navigation, gravimetry, Newton meter, gyroscope, inverse problem, wavelet.

Paper received 5/V/2010. Paper accepted 5/V/2010.

³Devyatisilniy Alexandr Sergeevich (devyatis@iacp.dvo.ru), Chislov Kirill Alexandrovich (kirillche@rambler.ru), the Institute of Automation and Control Processes, Vladivostok, 690041, Russian Federation.