УДК 543.42:620.197.3

КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МЕХАНИЗМА ДЕЙСТВИЯ ИНГИБИТОРОВ КОРРОЗИИ И НАВОДОРОЖИВАНИЯ СТАЛИ НА ОСНОВЕ ПРОИЗВОДНЫХ 1,4-БЕНЗОХИНОНА В ПРИСУТСТВИИ СРБ¹

(c) 2011 Г.С. Белоглазов², С.А. Терюшева³, С.М. Белоглазов⁴

Приведены результаты квантово-химических расчетов изолированных молекул — производных 1,4-бензохинона, выполненных ограниченным методом Хартри-Фока (RHF) по программе Gaussian 94 в базисе 3-21G. Рассчитаны коэффициенты корреляции между экспериментально определенными эффективностями этих соединений в роли ингибиторов коррозии и наводороживания стали СтЗ в средах, содержащих СРБ, и квантово-химическими характеристиками (KXX) этих молекул.

Ключевые слова: квантовая химия, моделирование, корреляция, органические ингибиторы, коррозия металлов, сульфатредуцирующие бактерии (СРБ), ВЗМО, НСМО, заряд, дипольный момент.

С целью торможения коррозионных процессов на поверхности стали и абсорбции ей катодного водорода в среду вводят органические соединения (OC) в роли ингибиторов коррозии [1; 2].

Экспериментальное определение эффективности ингибирующего коррозию действия (ЭИКД) ОС определяли гравиметрически по измерениям, выполненным в коррозионной среде с СРБ [3]. Образцы $50 \times 20 \times 15$ мм³ из листовой стали СтЗ (эта сталь является весьма распространенной в конструкциях, эксплуатирующихся в средах с присутствующими микроорганизмами) шлифовали микронной шкуркой, обезжиривали этанолом, облучали УФ и экспонировали 170 ч в водно-солевой среде, инокулированной СРБ вида Desulfovibrio desulfuricans (накопительную культуру создавали предварительно на основе природных микроорганизмов, выделенных многократным пересевом на элективной питательной среде Постгейта "Б"

184

¹Исследование поддержано грантом ведомственной программы Министерства образования и науки РФ (проект АВЦП № 3341, 10854). Результаты работы представлены на конференции "Математическая физика и ее приложения".

²Белоглазов Георгий Сергеевич (drgeorge59s@gmail.com), кафедра физики университета Додомы, Объединенная Республика Танзания, Додома, 259.

³Терюшева Светлана Александровна (sterjusheva@mail.ru), кафедра технологии материалов и судоремонта Балтийской государственной академии рыбопромыслового флота, 236029, Российская Федерация, г. Калининград, ул. Молодежная, 6.

⁴Белоглазов Сергей Михайлович, кафедра химии Балтийского федерального университета имени Иммануила Канта, 236041, Российская Федерация, г. Калининград, ул. Александра Невского, 14.

проб, которые были отобраны из ручья "Парковый" (Калининград)). За это время происходит завершение жизненного цикла популяции СРБ рода Desulfovibrio в ограниченном объеме герметично закрытого сосуда. Абсорбированный сталью водород определяли сразу после коррозии 170 ч в среде с накопленными в ней метаболитами СРБ (H_2S и карбоновые кислоты), содержащей как ОС с предполагаемой ингибиторной и биоцидной активностью, так и без ОС в коррозионной среде. Определение абсорбированного сталью водорода проводили анодным растворением, что позволяет определить послойную концентрацию водорода в приповерхностных слоях образца при их растворении и концентрационные профили водорода в стали [4–7].

Данные по эффективности ингибирующего действия исследованных ОС приведены в табл. 1.

Таблица 1

	Защитный эффект:						
	При коррозии Z_k , %			При наводороживании Z_h , %			
Концентрация,	1	2	5	1	2	5	
мМоль∙л ⁻¹							
OC6	61	70	92	30	32	33	
OC7	52	70	83	19	26	29	
OC8	37	55	70	17	21	28	
OC9	9	26	42	3	6	16	
OC10	33	46	67	9	13	22	
OC11	34	53	66	9	20	28	

Ингибиторная активность ОС производных 1,4-бензохинона

Таблица 2

Коэффициент снижения числа клеток СРБ производными 1,4-бензохинона

Концентрация,	n, %		
мМоль∙л ^{−1}			
	1	2	5
OC6	84	84	85
OC7	74	77	79
OC8	66	68	71
OC9	29	42	54
OC10	47	61	63
OC11	56	64	66

В течение экспозиции определяли pH (см. рис. 1), концентрацию биогенного H_2S в среде (рис. 2), численность бактерий (в фазовом контрасте под микроскопом БИОЛАМ "ЛОМО" в камере Горяева) и электродный потенциал стали φ (рис. 3).

Исследовано также биоцидное действие 1,4 - бензохинонов в концентрациях 1, 2 и 5 мМоль/л (подавление ОС жизнедеятельности СРБ). Исследованные ОС в локализованной донорно-акцепторной связи "металл-ингибитор" выступают в качестве доноров электронов, а металлические ионы – в роли акцепторов. Наличие ингибиторов-доноров на межфазной границе тормозит анодный процесс ионизации металла [1; 2]. В сериях измерений, проведенных в присутствии OC, снижение концентрации сероводорода происходит более резко, чем в контрольной серии (и оно существеннее при блыших концентрациях OC).

Данные, приведенные в табл. 2, 3 и на рис. 1, 2, показывают, что исследованные ОС эффективно подавляют метаболические процессы в клетках СРБ (т. е. рН в результате введения ОС снижается медленнее). Чем быстрее развивается культура, тем заметнее изменяется потенциал φ железа. На φ стали существенно влияет концентрация сероводорода (формы его существования в среде определяются величиной рН).

Таблица 3

Степень подавления СРБ производными 1,4-бензохинона

Концентрация, мМоль.л ⁻¹	S, %		
	1	2	5
OC6	46	50	57
OC7	44	48	54
OC8	41	46	51
OC9	23	24	27
OC10	23	34	36
OC11	33	39	45

Величина ΔE , фигурирующая в табл. 4 и 5, представляет собой разность энергий граничных орбиталей: $\Delta E = E$ (HCMO) – E (B3MO).

Таблица 4

			Laormiqu
Значения КХ	XX молекул производных 1,4	4-бензохинона, рассчи	танных
методом]	МПДП и ограниченным мете	одом Хартри-Фока (Н	RHF)

OC	Заряд на	Сумма	E	E	$\Delta E,$	Дипольный	
	атоме О,	$\sum_{i=1}^{6} O(C_i)$	(B3MO),	(HCMO),	а. е. э.	момент	
	e	$\sum_{i=1}^{n} Q(\mathbb{C}_i),$	а. е. э.	а. е. э.		молекулы,	
		e				Д	
МПДІ	I						
OC6	-0,302	0,018	-0,403	-0,056	0,347	0,000	
OC7	-0,271	0,172	-0,396	-0,072	0,324	0,429	
OC8	-0,269	0,184	-0,405	-0,073	0,332	0,000	
OC9	-0,255	0,218	-0,401	-0,079	0,322	0,253	
OC10	-0,242	0,249	-0,403	-0,085	0,318	0,000	
OC11	-0,231	0,554	-0,415	-0,093	0,322	0,000	
RHF							
OC6	-0,203	0,080	-0,307	0,145	0,452	0,000	
OC7	-0,189	0,110	-0,281	0,127	0,408	2,044	
OC8	-0,188	0,114	-0,298	0,125	0,423	0,000	
OC9	-0,183	0,121	-0,287	0,118	0,405	1,063	
OC10	-0,179	0,124	-0,292	0,111	0,403	0,000	
OC11	-0,144	0,578	-0,348	0,078	0,426	0,000	

186

Рис. 1. Изменение во времени р
Н коррозионной среды в присутствии производных 1,4-бензохинона в концентрации 5 м
Моль-л $^{-1}$

Рис. 2. Изменение концентрации H2S во времени при СРБ-инициированной коррозии в присутствии производных 1,4-бензохинона в концентрации 5 мМоль·л⁻¹

Результаты квантово-химического моделирования свойств молекул ингибиторов приведены в табл. 4 и 5. Коэффициенты корреляции (табл. 5) между величинами ΔE оптимизированных молекул производных 1,4-бензохинона и защитным эффектом при наводороживании стали 74...87 % (по методу МПДП) и 75...77 % (по методу RHF) отражают электрохимический механизм коррозии.

Рис. 3. Изменение во времени электродного потенциала образцов из стали Ст3 в коррозионной среде с СРБ в присутствии производных 1,4-бензохинона в концентрации 5 мМоль·л⁻¹

Таблица 5

Коэффициенты корреляции (r_z, r_h) эффективностей ингибирующего СРБ-инициированную коррозию Z_k и наводороживание Z_h действия с КХХ оптимизированных молекул производных 1,4-бензохинона, полученных методами МПДП и RHF

OC	Z_k в присутствии ОС в кон-			Z_h в присутствии ОС в кон-			
	центрации, мМоль·л ⁻¹			центрации, мМоль·л ⁻¹			
	1	2	5	1	2	5	
	ЭИКД, %			ЭИНД, %			
OC 6	61	70	92	30	32	33	
OC 7	52	70	83	19	26	29	
OC 8	37	55	70	17	21	28	
OC 9	9	26	42	3	6	16	
OC 10	33	46	67	9	13	22	
OC 11	34	53	67	9	20	28	
МПДП							
	r_z , %			r_h , $\%$			
E (B3MO)	16	12	14	23		-14	
E (HCMO)	63	54	61	85	64	50	
ΔE	66	57	64	87	74	68	
$\sum_{i=1}^{6} \mathbf{Q}(C_i)$	-42	-31	-41	-64	-36	-20	
Дипольный	—			-11		-22	
момент							
Заряд на	-65	-57	-63	-87	-67	-54	
атоме О							
RHF							
	r_z , %			r_h , %			
E (B3MO)	—	—	—	—	-19	-34	
E (HCMO)	47	37	45	69	42	26	
ΔE	64	57	63	77	75	76	
$\sum_{i=1}^{6} \mathbf{Q}(C_i)$	-16	—	-15	-35		_	
Дипольный	—	—	—	—	—	-17	
момент							
Заряд на	-41	-30	-38	-61	-34	-18	
атоме О							

Литература

- [1] Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
- [2] Экологические основы защиты от биоповреждений / под ред. В.Б. Ильичева. М.: Наука, 1985. 264 с.
- [3] Семенова И.В., Флорианович Г.М., Хорошилов А.В. Коррозия и защита от коррозии. М.: ФИЗМАТЛИТ, 2006. 376 с.
- [4] Белоглазов С.М. Наводороживание стали при электрохимических процессах. Л.: Изд-во ЛГУ, 1975. 410 с.
- [5] Белоглазов С.М. Электрохимический водород и металлы. Поведение, борьба с охрупчиванием: монография. Калининград: Изд-во КГУ, 2004. 321 с.

- [6] Beloglazov G.S. Modelling of adsorption of molecules of organic substances acting as inhibitors of corrosion and hydrogen absorption by metals using quantum chemistry // Mathematical Physics and its Applications. 2nd International Conf. Samara, 2010. P. 350–351.
- [7] Белоглазов Г.С., Белоглазов С.М. Экспериментальное и квантово-химическое исследование адсорбции и защитного действия ингибиторов коррозии и наводороживания металлов // Инновации в науке и образовании —2010: тез. докл. междунар. науч. конф. Калининград, 2010. С. 297–299.

Поступила в редакцию 18/I/2011; в окончательном варианте — 1/IV/2011.

QUANTUM CHEMICAL MODELING OF THE MECHANISM OF ACTION OF INHIBITORS OF CORROSION AND HYDROGEN ABSORPTION OF STEEL AT PRESENCE OF SRB (BASED ON 1,4-QUINONE DERIVATIVES)

© 2011 G.S. Beloglazov⁵, S.A. Teryusheva⁶, S.M. Beloglazov⁷

The results of quantum chemical computations of isolated molecules (derivatives of 1,4-quinone) performed by using restricted Hartree-Fock (RHF) method with the aid of Gaussian94 software in 3-21G basis set, are reported. Correlation coefficients between quantum chemical characteristics (QCC) of the molecules of inhibitors of corrosion and hydrogen absorption of steel St3 and experimentally measured efficiencies of such species as the inhibitors in SRB-containing media, have been calculated.

Key words: quantum chemistry, modelling, correlation, organic ingibitor, metallic corrosion, VZMO, NSMO, charge, dipole moment.

Paper received 18/I/2011. Paper accepted 1/IV/2011.

⁵Beloglazov Georgiy Sergeevich (drgeorge59s@gmail.com), the Dept. of Physics, University of Dodoma, United Republic of Tanzania, Dodoma, P.O. Box 259.

⁶Teryusheva Svetlana Alexandrovna (sterjusheva@mail.ru), the Dept. of Technology of Materials and Shipbuilding, Baltic State Fishing Fleet Academy, Kaliningrad, 236029, Russian Federation. ⁷Beloglazov Sergey Mihailovich, the Dept. of Chemistry, Immanuel Kant Baltic Federal Univer-

sity, Kaliningrad, 236041, Russian Federation.